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A study is made of two-dimensional integral equations arising in contact problems for 
bodies with complex properties, problems involving wear and tear of elastic and viscoelastic 
bodies. Methods of solution presented are based on the study of nonclassical spectral prop- 
erties of integral operators. Domains in which these methods can be applied effectively 
are examined. Theoretical results are illustrated with an applied example. 

i. We consider the integral equation 

e(t)(* --  L t ) q ~  t) + (I - -  L,)Aq~, t) = 6(0 + a(t)x -- g(x), 
t 

(I -- L0 ] (t) = l(t) -- ~ f (~) K~ (t~ ~) dr (~ = I, 2), (1. i) 
1 

1 

Ah (x) = ] h (~) k (L z) dL k (L z) = k (-- L --  z) 
- - 1  

subject to the additional conditions 
1 1 

P(t )= S q(x't) dx' M( t )= [ q(x,t) xdx. 
- - 1  - - 1  

(1.2) 

Here c(t) > O, 6(t), a(t), P(t), M(t) ~ C[l, T]; Ki(t, T) is a Volterra kernel [i]; q(x, t) 
is a function continuous with respect to t in L2[-I , i] ; A is an operator which is complete- 
ly continuous, self-adjoint, and positive-definite from L=[-I, i] into L2[-I, I], where 
1 1 

- - 1  - - 1  

We decompose the solution into a sum of parts, even and odd with respect to x, 
fied, respectively, with subscripts 1 and 2; Eqs. (I.I) and (1.2) then assume the form 

c (t) (I --  L1) qi (x, t) + (I -- L2) A~qi (x, t) = 8i (x, t), 

i (1.3) 
Adl  (x) = ] 11 (~) ki (~, x) d~ (i = l, 2), 

- - 1  

(a(t) x--g~(x) ,  i = 2 ;  

1 1 ( 1 . 4 )  
P ( t ) =  ] 91(x,t) dx, M(t)= Sq2(x't) xdx" 

- - 1  - - 1  

In  Eqs.  ( 1 . 3 )  and ( 1 . 4 )  l e t  us  assume t h a t  a l l  t h e  f u n c t i o n s  a r e  known e x c e p t  f o r  
q i ( x ,  t ) ,  6 ( t ) ,  a ( t ) .  We now f i n d  t h e s e  f u n c t i o n s .  We s t u d y  an even v e r s i o n  of  t h e  prob-  
lem, p u t t i n g  i = 1 i n  Eqs. ( 1 . 3 )  and ( 1 . 4 ) .  We n o t e  t h a t  

~ 0  n ~ O  

where {Pm*} is a complete orthonormalized system of Legendre polynomials in L2[-I, i]. 

We now introduce a complete Hilbert space of even functions, square-integrable on the 
interval [-][, I], such that the integral of these functions over this interval is equal to 
zero. Denote this space by L2~ i]. 

identi- 
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THEOREM i. The kernel k~(g, x) is representable in the form [see Eq. (1.5)] 

~1 (~' X) 
1 

~ (~, 
--1 

k~ (~, x) 

: 9--1/2/., 0 1~,'1 k~ (~, x) -~ 2-' /*k ~ (~) + .  ,~.,. ~., + D/2, 

x) d~ : O, k ~ (~) : 2 ro2nP:n (~) ~ L~ [-- 1, 1], 

~ (x, ~) Y, * p.,~ (~), O = ~oo, = = r2 . ,~ ,~P . , . ,  ( x )  * 

positive-definite from L2~ i] into L2~ i], and the sequence of its characteristic 
functions ~2i, corresponding to the characteristic n~bers 82i (i = i, 2, ...), constitutes 
a basis in L=~ i]. 

We can show that the sequence {~2i} (i = 0, i, ...; ~0 = 2-~/2) is a complete orthonor- 
malized system of even functions in L=[-I, i]. We write the solution in the form 

q~ (z, t) = ~ z,~ (t) r  (x), 
i=o (1.6) 

= E = E (x). 
i=O i = l  

Substituting the solution (1.6) into Eqs. (1.3) and (1.4), and taking Theorem 1 into 
account, we obtain 

t 

z2i (t) ----- f2i (t) q- S 12i (~) R~ (t, x) d~ (i = l ,  2 . . . .  ),: 
1 

[~i(t) = --(e(t) + ~=, ) - l [k=i ( I -  L2)zo(t) + g.,~], 

6 (t) = 2 -~/'~ [c (t)(l - -  L~) z o (t) + D (I - -  L2) z o (t) + 

] "-~ 2 k2i ( I  - -  L2) z~i (t) + go , z o (t) : 2 - ! 1 2 P  ( t ) ,  
{=1 

where  R i ~  ~) i s  t h e  r e s o l v e n t  o f  t h e  k e r n e l  K i ~  <) = [ c ( t ) K l ( t ,  x) + g i K 2 ( t ,  x ) ] / [ c -  
(t) + ~i]" 

2. We now consider an odd version of the problem [with i = 2 in Eqs. (1.3) and (1.4)]. 
We introduce a complete Hilbert space of odd functions, square-integrable on the interval 
[-i, i], such that the integral of the product of a function and x over this interval is 
equal to zero. Denote this space by L21[-I, i]. 

THEOREM 2. The kernel k2(~, x) is representable in the form 

k, (,~, x) = k] (~, x) + (3/2) 1t/2 ~k~ (x) + (3/2) 1/2 xk~ (~) + (3/2) Cx~, 
1 

S ~k~ (~, x) d~ : O, k.~ (~) : ~: r12n+1P*n+1t (~) ~ L~ [-- 1~ 1], 
_it  n=l  

k l(~,z) ki(x,g) Z E * * C =  = (z) P,,n+1t (~), r2m+l 2n-i-lP2m+ 1 r i l l  

( where  t h e  o p e r a t o r  B2\ B2cp(z)=_1to ~(~)kl(~,  ~)d~ i s  c o m p l e t e l y  c o n t i n u o u s ,  s e l f - a d j o i n t ,  and  

p o s i t i v e - d e f i n i t e  f rom L21[--1, 1] i n t o  L 2 ~ [ - 1 ,  1 ] ,  and  t h e  s e q u e n c e  o f  i t s  c h a r a c t e r i s t i c  
f u n c t i o n s  ~ 2 i + 1 ,  c o r r e s p o n d i n g  t o  t h e  c h a r a c t e r i s t i c  numbers  g 2 i + t  ( i  = 1,  2 . . . .  ) ,  f o r m s  a 
b a s i s  i n  L a l [ - 1 ,  1 ] .  

We can  show t h a t  t h e  s e q u e n c e  {r  ( i  = 0 ,  l ,  . - . ;  ~1 = ( 3 / 2 )  1 /2x )  i s  a c o m p l e t e  
orthonormalized system of odd functions in L2[-I, i]. We write the solution in the form 

q, (z, t) = ~ z~+1t C t) .2~+1 (x), ( 2 . 1 )  
i = 0  
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~=0 ~=1 

Substituting Eqs. (2.1) into Eqs. ( 1 . 3 )  and (1.4) and taking Theorem 2 into account, 
we find 

t 

z~i+1 (t) = / 2 i + :  (t) + y ]2~+: (~) B!~{+: (t, ~) d~ (i = 1, 2 . . . .  ),, 
1 

12~+~ (t) =- - -  ( c ( t )  + ~2~+0-1[k:~+1 (I --  Lz) z, (t) + g~+l], 

a (t) = (3/2)~/:[c (t)(I - -  L J  z~ (t) + C (I - -  L,) z~ (t) + 
-i 

+ ~.~ k,i+~ (I - -  L_~) z,,i+~ (t) + gl i' zl (t) = (3/2/2/2 M (t). 

3. We c o n s i d e r  now t h e  c a s e  i n  wh ich  q ( x ,  t ) ,  P ( t ) ,  and M(t )  i n  Eqs.  ( 1 . 3 )  and ( 1 . 4 )  
are unknown. Since in obtaining the solution we employ the classical procedure of the spec- 
tral t h e o r y  o f  o p e r a t o r s  [1 ,  3 ] ,  we s u p p l y  o n l y  t h e  b a s i c  f o r m u l a s .  We. t a k e  t h e  s o l u t i o n  
in the form 

i=o i=0 

q, (x, t) = E (t) (x), g, (x) = E (x), 
i=o  i=0 

1 =  ~ ~,,r <x), x = ~ X2~+,r (x), 
~=0 i=0 

Acp~ = ai~{ (i = 0, t ,  2 . . . .  ). 

Here ~i are: characteristic numbers of the operator A and @i are its orthonormalized charac- 
teristic functions. We substitute Eq. (3.1) into Eqs. (1.3) and (1.4); then 

t 

(t) = / h  (t) + R: (t, "0 
1 

I[5~5 (t) - -  gd d7 ~ (t), i ~ O, 2 . . . .  , 

A~ (t) = [[v~ (t) X~--  gd dV 1 (t), i = i,  3 . . . . .  

P (t) = ~,  ~2if.02i (t), M (t) = ~ X2i+1~o2,+1 ( t ) ,  
i=o  {=0 

where Ri*(t , ~) is the resolvent of the kernel Ki*(t , ~) = [c(t)Kl(t , T) + ~iK2(t, T)]di -I. 
(t), di(t) = c(t) + ~i" 

It can be shown that in the class of functions chosen the solution of Eq. (1.3), sub- 
ject to the conditions (1.4), exists, is unique, and may be constructed by the methods set 
forth with an arbitrarily high degree of accuracy. 

We mention now several areas of application of the proposed methods: I) contact prob- 
lems of the theory of elasticity [4] and viscoelasticity for bodies with roughnesses and 
coatings subject to wear and tear; 2) contact problems for nonhomogeneous viscoelastic aging 
laminated foundations [5, 6]; 3) contact problems for wear and tear of viscoelastic founda- 
tions with complex rheologies. Similar equations occur in [7, 8]. 

As an example we consider a two-dimensional contact problem concerning frictionless im- 
pression Q(t ~ of a rigid stamp on the surface of a two-layered foundation: a nonhomogene- 
ously aging thin layer [8, 9], and a homogeneously aging layer of arbitrary thickness H. 
The thin layer of thickness h lies frictionless on the homogeneously aging layer, coupled 
with a nondeforming foundation. The stamp has a flat bottom, a contact line of length 2a, 
and off-center application of force equal to zero. Based on [9-11], we arrive at an even 
version of Eq. (i.i) subject to a given supplementary condition (see also [5, 6]), where 

t = t ~  1, ~ = T " ~ [  I, x =  xOa -1, ~ ( t ) = 6  ~ o )a-l~ 

a( t )  = O, g (x )  = O, M ( t )  = O, H a  -~  = ~, 
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k (~, x) = n - l k  ~ [(~o x~ ~ = ~ a . ,  

• (y) = • (y) ~ ; ~ .  q (x,  t) = qo (x  o, t o) o;-~ (to _ ~) ,  

K 2 (t, ~) = K ~ (t o - -  %, ~o _ %) zx,  K1 (t, ~) = 02 (T O - -  T2) 0r (t ~ 071 (t o - -  T2) 0~ -~ 0: o) ~ I K ~  (t o, -to), 

20 (t) -= Q (t ~ a-lO'~ 1 (t o -- %), c (t) = 0,5ha-10z (t o -- T2) 071 (t~ 
h 

t ~ K o (t o xo ,~o • K~ (t ~ ~o) = h- + (y), + (y)) dy, 
0 

h 
t - 1  [ E ;  (t~ -1  = ~ ' y Z l  ( to -4- ~o ( y ) ) d y , ,  

o 
~ 6 ~ ) ~ (t o ) 

o~ (to) = o~ (t ~ = 
2 ( t -  ~,~) ' 2 (2 - ~:) 

Here t o is the present instant of time; t ~ is the variable of integration on a real time 
scale; x ~ is the horizontal coordinate; ~~176 defines the settling under the stamp; K ~ 
[(E0 _x0)/H] is the kernel of the two-dimensional contact problem; g0 is the variable of 
integration over a real scale of lengths; K~ is a function of homogeneous aging through 
the depth of the thin layer; q~176 t ~ is a function of contact pressures under the stamp; 
�9 z is the age of the elements of the lower boundary of the thin layer at the instant of 
application of the load; Ki~ ~ ~0), Ci0(t 0, T0), Ei(~0), and v i are, respectively, kernels, 
measures of creep, moduli of elastoinstantaneous deformation, and Poisson coefficients of 
the top (i = i) and bottom (i = 2) layers; ~a is the preparation time for the bottom layer. 

We write the measures of creep in the form [ii] 

A.Oe-~~ ~ C~ (t~ ~o) = q~ (To) h (t o - -  ~~ r (~o) = C~ + , ., 

l,(to_~o) (i_e-~'~176176 13~=0 
As the material of the layers we take concrete; then, assuming the elastic characteris- 

tics to be fixed, we take the following values for the parameters [Ii, 12] (since the mater- 
ials of the layers are identical, we omit subscripts on the parameters): c(t) = 0.2, ~ = 2, 
C~ = 0.5522, A~ = 4, ~a = 0, v = 0.3, 6 ~ = 0.031 day -~, $0 = 0.06 day -~. We consider the 
cases of natural and artificial nonhomogeneous aging of a bundle of layers following [6, 12]. 
As the total characteristic of nonhomogeneous aging, we introduce the nonhomogeneous aging 

a 

t ~ e-~X(~)dy. p a r a m e t e r  F = h- 
0 

1.  N a t u r a l  n o n h o m o g e n e o u s  a g i n g  

~ F < e~, ~z = 75 days, P(t) = 0 .5 ( i  - -  cos 4ut ) .  

2.  A r t i f i c i a l  n o n h o m o g e n e o u s  a g i n g  

0 < F ~< 1,: ~z = t0  days ~ P(t) = 0 .5 [ i  - -  cos 0.4u(t  - -  i ) l .  

The age '~z differs for the two aging cases; therefore, on the graphs we give two dimen- 
sionless time scales t, where the functions P(t) are chosen so that in terms of these scales 
the loads are specified by one and the same curve. We examine separately the process in 
which ~ = i in cases i and 2, which corresponds to homogeneous aging of the foundations. We 
note, by virtue of [8, 9], that 

L (u) = 

k ~ (z) = ~ L (u) cos uzdu~ , j  u 
o 

2x sh 2u -- 4u ~r = o ~ -- ~,P'". 
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1 

~ ' ~  o,5 

Fig. i 

/ \  

I/,' 't 

2 /  

Fig. 2 Fig. 3 

We denote the characteristics for the homogeneous (p = 1), the natural nonhomogeneous 
(p = i0), and the artificial nonhomogeneous (p = 0.05) processes of aging of the foundation 
by continuous, dash, and dot~ash curves, respectively. The dash curves always refer to 
the lower time scale, while the dot-dash curves refer to the upper time scale. 

Figure 1 shows the dependence of q(x, t) on x: homogeneous aging for arbitrary t, for 
which P(t) = i; natural nonhomogeneous aging for t = 1.25; artificial nonhomogeneous aging 
for t = 3.5. It is evident that for natural nonhomogeneous aging the distribution of con- 
tact pressures becomes more uniform in comparison with the case of homogeneous aging of the 
bundle of layers; for artificial nonhomogeneous aging the picture is just the reverse. 

Figure 2 shows the variation of the maxima and the minima contact pressures with 
respect to the time, depending on the type of aging. This expresses the fact that in the 
case of homogeneous aging the contact pressures depend only on the magnitude of the load 
acting on the st~p with a flat bottom, i.e., creep has no effect on their distributiob 
and, particularly, on the elastic solution. Naturally, for loads symmetric with respect to 
some instant of time, the continuous curves are symmetric. For nonhomogeneous aging, for 
the very same loads, symmetry for the analogous curves is violated. 

The trend in the variation of qmax and qmin is easily determined from the figure. How- 
ever, in the case of natural nonhomogeneous aging, at each time instant t, with P(t) ~ 0, 
the maxima contact pressures are always less, and the minima contact pressures are always 
greater, than the analogous pressures in the case of homogeneous aging. The reverse conclu- 
sions apply to the case of artificial nonhomogeneous aging. 

Figure 3 shows the dependence of settling under the stamp, 6(t), on the time. The two 
continuous curves show that 6(t), for p = l, depends on the rheological properties of the 
foundation, in particular, on the choice of ~i. ~en t > l, the magnitude of settling, in 
the case of natural nonhomogeneous aging is always greater, and in the case of artificial 
nonhomogeneous aging is always less, than its magnitude for the homogeneous version. 

The authors wish to thank N. Kh. Arutyunyan for his ever-present interest in the present 
paper. 
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GENERALIZED THEORY FOR NONISOTHERMAL STRAIN 

E. I. Blinov and K. N. Rusinko UDC 539.374 

The problem is solved for analytical description of relationships between strains, 
stresses, and temperature "at a point" of a solid during its thermomechanical loading. 
Stresses are divided into equilibrium and nonequilibrium. Equilibrium stresses do not de- 
pend on time effects for deformation, and through them by methods of classical plasticity 
theory irreversible strain is determined. Recovery of mechanical properties at elevated 
temperatures is considered. Apart from nonisothermal plastic strain, nonsteady and high- 
temperature steady-state creep and thermal aftereffect are described. 

i. Basic Assumptipns. Consideration is given to the condition of a constant density 
substance in the quite small neighborhood of a point of deforming solid as an element char- 
acterizing the condition at this point. Due to the specific nature of strains for a solid, 
this phenomenological element of material forms a closed thermodynamic system in which clas- 
sical thermodynamic laws operate [i]. Experiments show [2, 3] that if at a certain instant 
of thermomechanical loading for an actual solid strain and temperature are fixed, then after 
this there is a reduction in stress so that complete (thermodynamic) equilibrium in the sys- 
tem sets in only after this relaxation. 

Stresses which remain after transfer of the system from an actual to a thermodynamic 
equilibrium condition we call equilibrium, and the relaxed part of stresses whose tensor 
components are obtained by subtracting the equilibrium stress tensor component <oij> from 
the corresponding stress tensor component oij occurring at the instant of fixing strains 
and temperature, we call nonequilibrium stresses and we designate them #ij" Thus, in each 
instant of deformation there is an identity 

~i~------- ~ i j  - -  <oi j>,  i, ] = t ,  2, 3. ( 1 . 1 )  

L'vov. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, 
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